A COMPARATIVE STUDY ON MICROSTRUCTURE AND COMPRESSIVE PROPERTIES OF NITI ALLOYS SINTERED FROM NI/TI AND NI/TIH₂ MIXTURES

Gang Chen,* Neil Edmonds** and Peng Cao***

INTRODUCTION

The equiatomic NiTi alloy was first found accidentally by Buehler et al.¹ and immediately attracted extensive research interest because of its unique properties, such as shape-memory effect (SME), pseudoelastic properties, low stiffness, large energy absorption, and excellent biocompatibility.² Although ingot-wrought processing is the mainstream manufacturing technique for solid NiTi products, powder metallurgy (PM) offers an alternative approach. In particular, PM technologies have exceptional advantages if a porous NiTi microstructure is required. Porous structures can be readily obtained by incomplete sintering, space holding, or additive manufacturing (3D printing). One example of the utilization of a porous structure is for surgical implants.³ Porosity on the implant surface not only benefits the bone-tissue ingrowth, but also provides an effective way of reducing the stiffness of the implant. Reducing the implant stiffness to that of bone helps mitigate a phenomenon of stress shielding that usually leads to failure of the implant.⁴ In PM, the conventional press-and-sinter process is by far the most widely used method to fabricate NiTi alloys and is a simple, cost-effective, and highly efficient route.⁵ Prealloyed NiTi, or elemental Ti and Ni powders, are mixed and pressed into compacts under a pressure of 200-1,100 MPa. The green compacts are then sintered in a protective atmosphere or under vacuum at a temperature of 900–1,200 °C. The pores in the sintered NiTi alloys are caused by several factors, such as original pores in the green parts,6 the Kirkendall effect,^{6,7} a transient liquid phase,⁶ and phase transformation (alloying).⁸

RESEARCH & TECHNOLOGY

This work reports a comparative study using nickel powder and two different titanium powder sources to synthesize porous NiTi alloys via a conventional press-and-sinter powder metallurgy process. Two batches of powder mixture (i.e., Ni/Ti and Ni/TiH₂) were prepared in a ball mill, pressed under five different compaction pressures, and subsequently sintered in vacuum at 1,100 °C for 2 h. The results of microstructural observations reveal porosity ranging from $5.1 \pm 0.6\%$ to $31.2 \pm 0.3\%$, and density varying from $4.38 \pm 0.02 \text{ g/cm}^3$ to $5.74 \pm 0.04 \text{ g/cm}^3$ in the sintered samples. The predominant phase identified in all the NiTi alloys produced is B2-NiTi, with the presence of minor Ni₃Ti and *NiTi*₂ *phases. The sinter* shrinkage is not uniform, with axial shrinkage (A) being larger than radial shrinkage (R). The A:R ratio increases with increasing compaction pressure. The cyclic compressive behaviors of the porous NiTi alloys made from *Ni/Ti and Ni/TiH*₂ *mixtures* were also investigated. In comparison with the sintered Ni/Ti samples, the sintered Ni/TiH₂ samples exhibit more porosity, a larger pore size, lower fracture strength, and lower secant modulus.

The use of TiH₂ powder has been claimed to promote densification and

^{*}Postdoctoral Fellow, Department of Chemical and Materials Engineering, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand/State Key Laboratory of Porous Metal Materials, Northwest Institute for Nonferrous Metal Research, Xi'an, Shaanxi, 710016, P.R. China, **Senior Lecturer, School of Chemical Science, ***Associate Professor, Department of Chemical and Materials Engineering, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; E-mail: p.cao@auckland.ac.nz